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Synopsis 

This article presents the results of a numerical study (finite differences) of the heat transfer 
problem in flowing polymer melts. The tube wall is assumed to be at  a constant temperature. The 
rheological behavior of the melt is described by a power law temperature-dependent model. A 
convective and a viscous dissipation term are included in the energy equation. Temperature profiles, 
bulk temperatures, and Nusselt numbers are presented for a variety of flow entry temperatures. 

INTRODUCTION 

In a recent article, Dang' presented an analytical solution to the problem of 
heat transfer of a power law fluid flowing inside a tube with viscous dissipation. 
Like most previous investigations on this topic,2-1z Dang used a temperature- 
independent viscosity model. It is well known, however, that polymer melts 
exhibit a strong dependence of viscosity on temperature, and such a dependence 
is expected to influence the heat transfer characteristics. Some aspects of the 
heat transfer problem for a fluid with temperature and shear rate dependent 
viscosity have been studied by Morrette and Gogos,13 Forsyth and Murphy,14 
Kim and Collins,l5 Forrest and Wilkinson,lG Galili, Rigbi, and Takserman- 
Krozer,17 Winter,l8!19 Popovska and Wilkinson,20 and Pearson.zl It should be 
noted, however, that none of these articles gives a complete set of results on the 
temperature profiles, bulk temperatures, or Nusselt numbers. 

The present numerical study is for a temperature-dependent power law fluid 
flowing inside a tube held at  a constant temperature. Results are given for a 
typical high-density polyethylene melt. The computer program used is available 
upon requeskZ2 

MATHEMATICAL FORMULATION AND PROCEDURE 

The physical system for Poiseuille (or pressure) flow through a tube with cir- 
cular cross section is illustrated in Figure 1. It consists of flow through a tube 
with an inside radius, a ,  and constant temperature walls. 

The general equations for the conservation of mass, momentum, and energyz3 
can be simplified by making the following assumptions: 

(1) The melt is incompressible. 
(2) 

forces. 
(3) 
(4) 
(5) Normal stresses are negligible. 
(6) 

Inertial forces are negligible in comparison with viscous and pressure 

Body forces (e.g., gravity) are also negligible. 
The thermal conductivity and specific heat are constant. 

Heat transfer by conduction in the direction of flow is negligible compared 
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to both convection in the direction of flow and conduction perpendicular to the 
direction of flow. 

The simplified conservation equations for Poiseuille flow through a circular 
tube are 

Continuity (integral form):  

a2 
2 

urdr = - uaVg 

Momentum: 
I d  

d p  + -- ( r r r z l  = o 
d z  r d r  

_ -  

or 

Energy: 

or 

dP 1 d 
d z  r dr  

-- + - r,, + - r,, = 0 

d u  pCpu-=- -  r -  +r,,- 
dr  dT dz r dr  ( :g 

dT 82T k d T  d u  p C P u - =  k----+--+ 7,- 
dz dr2  r dr dr  

A common constitutive equation for polymer melts is 

d u  
Trz = 77 & 

where 

Then, by substitution into the momentum and energy equations, we obtain 

Momentum: 

d p  d 2 u  dq d u  
d z  d r  (: dr )  dr  

_ -  + q y - +  - + -  - = o  

(3) 

(4) 

(5) 

Energy: 

bT d 2 T  k d T  d u  2 

dr br2 r dr 
pCpu - = k __ + -- + 77 (z) (6) 

r T=T, 

Fig. 1. Notation for Poiseuille flow through a tube of circular cross section. 
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where 

The boundary conditions for the above equations are the following: 

z = 0: u = uo(r) = uavg I" - [l - (L)'], T = To 

where 

v = (n  + l)/n, n = power-law index (7)  

r = 0: du/dr = 0, bT/br = 0 (symmetry) 

r = a :  u = 0 ,  T =  T, 

A ( n  + l ) /n  degree parabolic velocity profile, uo(r), and a constant temperature, 
T = To, have been chosen a t  z = 0. However, with the present numerical tech- 
nique, any other type of starting profiles could have been used. 
Let 

p=- P - P o  
PU 2avg 

T - T,  
To - T w  

o =  
kz  

Z =  
P C p U a v g a 2  

r 
a 

R = -  

Substituting this into eqs. (l), (5), and (6), we obtain in terms of dimensionless 
parameters: 

Continuity (integral form): 
1 f ' URdR = - 
2 

Momentum: 

Energy: 

where 

bo b28 1 dB 
bZ bR2 R b R  

)-J-=-+--+7 
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The accompanying dimensionless boundary conditions are the following: 
v + 2  

2 = 0: U = Uo(R) = - [l - R'] ,  0 = 1 
Y 

R = 0: dU/dR = 0, &/dR = 0 

R = l :  U = O ,  O = O  
An implicit finite difference scheme of the Crank-Nicolson type was used to 

solve the previous equations. The procedure is explained in detail in a thesis22 
which also includes a well-documented computer program. 

The local bulk temperature, Tbu1k, and the local Nusselt number, Nu,, were 
determined from the velocity and temperature profiles by using the following 
definitions: 

RESULTS AND DISCUSSION 

Solutions of the continuity, momentum, and energy equations for Poiseuille 
flow through a tube with circular cross section are presented in Figures 2-7. The 
following velocity and temperature boundary conditions have been used: 

TEMPERATURE *C 
Fig. 2 Development of temperature profiles. (-) Power law temperature-dependent viscosity 

fluid; (- - -) temperature-independent viscosity fluid. To = 130°C; T,  = 16O0C. 
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DIMENSIONLESS AXIAL DISTANCE, 2 
Fig. 3. Bulk temperature as a function of dimensionless axial distance. Power law tempera- 

ture-dependent viscosity fluid. 

where 
uavg = 15.0 cmlsec, v = ( n  + l) /n,  n = 0.453 (14) 

r = 0: d u l d r  = 0, d T l d r  = 0 
r = a = 0.125 cm: u = 0, T,  = 160°C 

Also, the following power law temperature-dependent viscosity model and fluid 
properties representing a typical high-density polyethylene melt were used in 
the computations: 

Viscosity: 

where A = 282,000 poise.secn-l = 28,200 Pas", B = 0.0240 K-l, n = 0.453, and 
T ,  = 399.5 K. 

c------- 233L 
240 

,/ 1000 Pa.5 
POWER LAW TEMPERATURE- / 

/ 220 DEPENDENT VISCOSITY FLUID - 

------- NEWTONIAN FLUID .u 

t- 

a m  0.01 0.03 0.1 0.3 1.0 4.0 
DIMENSIONLESS AXIAL DISTANCE, 2 

Fig. 4. Bulk temperature as a function of dimensionless axial distance. (-) Power 
ature-dependent viscosity fluid; (- - -) Newtonian fluid. 

law temper- 
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I I I I I 

0004 0.01 0.03 03 0.3 1.0 4.0 
DIMENSIONLESS AXIAL DISTANCE, Z 

Fig. 5. Local Nusselt number as a function of dimensionless axial position. Power law tempera- 
ture-dependent viscosity fluid. 

Density: 

p = 794 kg/m3 

Specific heat: 

C,  = 0.600 cal/(gK) 

= 2.51 kJ/(kgK) 

Thermal conductivity: 

k = 6.10 X 10-4 cal/(cm-sec.K) 

= 0.255 W/(m-K) 

897 

I I I I I 
0.004 0.01 0.03 03 03 1 .o 4.0 

DIMENSIONLESS AXIAL DISTANCE, Z 
Fig. 6. Local Nusselt number as a function of dimensionless axial position. (-) Power law 

temperature-dependent viscosity fluid; ( -  - -) temperature-independent viscosity fluid. 
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0.004 0.01 0.03 0.1 03 1.0 4.0 
DIMENSIONLESS AXIAL DISTANCE, 2 

Fig. 7. Local Nusselt number as a function of dimensionless axial position. (- 
temperature-dependent viscosity fluid; (- - -) Newtonian fluid. 

-) Power law 

The temperature profiles, bulk temperatures, and local Nusselt numbers in 
Figures 2-7 are shown as functions of the dimensionless axial distance, 2. 

In Figure 2, the temperature profiles for the power law temperature-dependent 
viscosity model and for a power law temperature-independent viscosity model 
are compared. The temperature-independent viscosity model used is identical 
to the temperature-dependent viscosity model given in eq. (15), except that T 
is held constant and equal to the tube-wall temperature (160'c). It can be seen 
that the temperature of the fluid obtained with the temperature-independent 
model is generally higher than is the case with the temperature-dependent model. 
However, the fully developed temperature profiles for the two models are about 
the same. At intermediate values of 2, the temperature profiles bulge near the 
wall, indicating that more heat is generated by viscous dissipation here than is 
generated near the center line of the tube. This is due to the fact that the shear 
rates are the highest near the tube walls. 

Plots of the bulk temperatures along the length of the tube are presented in 
Figures 3 and 4 for the power law temperature-dependent viscosity model and 
for the Newtonian model. In Figure 3, the bulk temperatures are shown for 
power law temperature-dependent viscosity fluids with different inlet temper- 
atures. In each case, the limiting bulk temperature is the same (204.7"C). This 
is to be expected since the fully developed velocity and temperature profiles are 
only influenced by the wall boundary conditions and by the viscosity and thermal 
conductivity of the fluid, but not by the inlet conditions of the fluid. Also shown 
in Figure 3 is the effect of removing the viscous dissipation term from the energy 
equation. Without viscous dissipation, the limiting bulk temperature is equal 
to the wall temperature (16OOC). The difference of 44.7"C is an indication of 
the importance of viscous dissipation in the Poiseuille flow of polymer melts 
through a tube. The rise in bulk temperature for the power law temperature- 
dependent viscosity model is compared with several Newtonian models in Fig- 
ure 4. 
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Plots of the local Nusselt number along the length of the tube are presented 
in Figures 5 and 6 for the power law temperature-dependent model and for the 
Newtonian model. In Figure 5, the local Nusselt numbers are shown for power 
law temperature-dependent viscosity fluids having different inlet temperatures. 
In each case, the limiting local Nusselt number is 8.97. Although not shown the 
limiting local Nusselt number for the case where viscous dissipation has been 
neglected is 4.00. It can be seen that when the fluid is heated by the tube walls 
(To = 130°C, T,  = 16OoC), there is a region along the tube where the local 
Nusselt number is negative, and a point where it is discontinuous. This behavior 
can be easily explained in terms of eq. (13) using the value of the temperature 
gradient (dT/dr),,n and the sign of the temperature difference Tbulk - Twall. 

A similar behavior has been also observed in a related problem.24 
The local Nusselt numbers for the power law temperature-dependent and 

temperature-independent viscosity fluids are compared in Figure 6. The limiting 
local Nusselt numbers are 8.97 and 12.09, respectively, for the two fluids. In 
Figure 7, the local Nusselt numbers are shown for the power law temperature- 
dependent viscosity fluid and several Newtonian, constant viscosity fluids. 

The results for the power law temperature-dependent viscosity model have 
been compared with the power law temperature-independent viscosity model 
and the Newtonian, constant viscosity model results. Given an appropriate 
temperature for the temperature-independent model, or an appropriate viscosity 
for the Newtonian model, it can be seen that the temperature-dependent model 
results are adequately estimated by the use of either of the simpler models. The 
choice of temperature and viscosity was made by inspection. However, if we 
did not have any temperature-dependent model results to compare our more 
simplified model results with, then we would not have anything on which to base 
our choice of temperature or viscosity. Furthermore, the given temperature or 
viscosity usually works for one type of flow only. For example, in Figure 4 it can 
be seen that the rise in bulk temperature for the temperature-dependent model 
is closely approximated by a Newtonian fluid with a viscosity of about 600 Pas, 
while in Poiseuille flow between parallel plates, a viscosity of about 700 Pa-s is 
required.24 
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